WINTER - 19 EXAMINATION
 Subject Name: Computer Graphics
 Model Answer
 Subject Code: 22318

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

		reality (VR). VR is an immersive sensory experience that digitally simulates a remote environment.	
	b	List / name two line drawing algorithms.	2 M
	Ans	- Digital Differential Analyzer (DDA) Algorithm - Bresenham's Line Drawing Algorithm	Any two names: $\mathbf{2} \mathbf{M}$
	c	Explain the need of homogeneous co-ordinates matrix.	2 M
	Ans	Homogeneous coordinates are used extensively in computer vision and graphics because they allow common operations such as translation, rotation, scaling and perspective projection to be implemented as matrix operations.	Explanation: 2 M
	d	Define polygon clipping.	2 M
	Ans	A set of connected lines are considered as polygon; polygons are clipped based on the window and the portion which is inside the window is kept as it is and the outside portions are clipped. OR Polygon clipping is removal of part of an object outside a polygon.	Any suitable definition: 2 M
	e	Draw Cubic Bezier Curve.	2 M
	Ans	$0 \int_{P_{0}}$	$\begin{gathered} \text { Any similar } \\ \text { type of curve: } 2 \\ \text { M } \end{gathered}$
	f	Define Bitmap Graphics.	2 M
	Ans	- A bitmap is an image or shape of any kind-a picture, a text character, a photo-that's composed of a collection of tiny individual dots. A wild landscape on your screen is a bitmapped graphic, or simply a bitmap. - It is a pixel based image, not scalable and size of image is high.	Any suitable definition: 2 M
	g	List various character generation methods.	2 M
	Ans	- Stroke Method - Bitmap Method - Starburst Method	$\begin{gathered} \text { Any two } \\ \text { names: } 2 \mathrm{M} \end{gathered}$
2		Attempt any THREE of the following :	12 M
	a	Write short note on Augmented Reality.	4 M
	Ans	- Augmented reality (AR) is made up of the word "augment" which means to make something great by adding something to it. - Augmented Reality is a type of virtual reality that aims to duplicate the world's environment in a computer. - Augmented reality is a method by which we can alter our real world by adding some digital elements to it.	Explanation:

	$\left.S=\left[\begin{array}{cccc}S_{x} & 0 & 0 & 0 \\ 0 & S_{y} & 0 & 0 \\ 0 & 0 & S_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right], ~\right], ~$

It specifies three co-ordinates with their own scaling factors. If scale factors,
$S x=S y=S z=S>1$ then the scaling is called as magnification.
$\mathrm{Sx}=\mathrm{Sy}=\mathrm{Sz}=\mathrm{S}<1$ then the scaling is called as reduction.
Therefore, point after scaling with respect to origin can be calculated as,
$\mathrm{P}=\mathrm{P}$. S

Page 6 | 33

OUR CENTERS :

| structure object surfaces an approximation spline sur face credited for a |
| :--- | :--- | :--- | :--- | :--- | :--- |
| design application. Straight lines connect the control -point positions above |
| the surface. |

Page 8 | 33

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

	- Picture definition is stored in a memory area called the refresh buffer or frame buffer. This memory area holds the set of intensity values for all the screen points. The stored intensity values are then retrieved from frame buffer and painted on the screenone row at a time. Each screen point is referred as Pixel orpel. Each pixel on the screen can be specified by it row and column number. - Intensity range for pixel position depends on capability of the raster system. In black and white system, the point on screen is either on or off. Only one bit is needed to control the intensity of the screen. In case of color systems, 2 bits are requiredOne to represent ON (1), another one is OFF (0). - Refreshing on raster scan is carried out at the rate of 60 to 80 frames per seconds. The video or display controller has direct access to memory locations in the frame buffer. It is responsible for retrieving data from the frame buffer and passing it to the display device. It reads bytes of data from frame buffer and converts 0 's and 1 s in one line into its corresponding video signals and this is called a scan line. If the intensity is one (1) then controller sends a signal to display a dot in the corresponding position on the screen. If the intensity is zero (0) then no dot is displayed.	
b	Write procedure to fill polygon with flood fill.	4 M
Ans	flood_fill(x,y,old_color,new_color) \{ if(getpixel $(x, y)=$ old color $)$ \{ putpixel(x,y,new_color); flood_fill(x+1,y,old_color, new_color); flood_fill(x-1,y,old_color, new_color); flood_fill(x,y+1,old_color, new_color); flood_fill(x,y-1,old_color, new_color); flood_fill(x+1,y+1,old_color, new_color); flood_fill(x-1,y-1,old_color, new_color); flood_fill(x+1,y-1,old_color, new_color); flood_fill(x-1,y+1,old_color, new_color);	Correct procedure: 4 M

	From the above Fig. you can write that: $\begin{aligned} & \mathrm{X}^{\prime}=\mathrm{X}+\mathrm{tx} \\ & \mathrm{Y}^{\prime}=\mathrm{Y}+\mathrm{ty} \end{aligned}$ The pair (tx, ty) is called the translation vector or shift vector. The above equations can also be represented using the column vectors. $\begin{aligned} \mathrm{P} & =[\mathrm{X}][\mathrm{Y}] \mathrm{p}^{\prime} \\ & =[\mathrm{X}][\mathrm{Y}] \mathrm{T}=[\mathrm{tx}][\mathrm{ty}] \end{aligned}$ We can write it as, $\mathrm{P}^{\prime}=\mathrm{P}+\mathrm{T}$ Rotation - Rotation as the name suggests is to rotate a point about an axis. The axis can be any of the co-ordinates or simply any other specified line also. - In rotation, we rotate the object at particular angle θ (theta) from its origin. From the following figure, we can see that the point $\mathrm{P}(\mathrm{X}, \mathrm{Y})$ is located at angle φ from the horizontal X coordinate with distance r from the origin. - Let us, suppose you want to rotate it at the angle θ. After rotating it to a new location, you will get a new point $\mathrm{P}^{\prime}\left(\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}\right)$. Using standard trigonometric the original coordinate of point $\mathrm{P}(\mathrm{X}, \mathrm{Y})$ can be represented as: $\mathrm{X}=\mathrm{r} \cos \phi$ $Y=r \sin \phi$ Same way we can represent the point $\mathrm{P}^{\prime}\left(\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}\right)$ as: $x^{\prime}=r \cos (\phi+\theta)=r \cos \phi \cos \theta-r \sin \phi \sin \theta$ $y^{\prime}=r \sin (\phi+\theta)=r \cos \phi \sin \theta+r \sin \phi \cos \theta$ Substituting equation (1) and (2) in (3) and (4) respectively, we will get Representing the above equation in matrix form,	

		Line 1:- $\begin{array}{lll} P_{1}=(35,10) & w x_{1}=50 & w y_{1}=40 \\ P_{2}=(62,40) & w x_{2}=80 & w y_{2}=10 \end{array}$ $\begin{aligned} & P_{1}=0001 \\ & P_{2}=1000 \end{aligned}$ ANDing 0000 Line is partially visible. $\begin{aligned} & m=\frac{40-10}{62-35}=\frac{30}{27} \\ & y_{1}=m\left(x_{L}-x\right)+y \\ &=\frac{30}{27}(50-35)+100 \\ &=\frac{30}{27}(15)+10=26.66 \\ & x_{1}=\frac{1}{m}\left(y_{T}-y\right)+x \\ &=\frac{21}{30}(40-10)+35 \\ &=\frac{27}{30}(30)+35=62 \\ & y_{2}=m\left(x_{R}-x\right)+y \\ &=\frac{30}{27}(80-35)+10 \\ &=\frac{30}{27}(45)+10=60 \\ & x_{2}=\frac{1}{m}\left(y_{B}-y\right)+x \\ &=\frac{27}{30}(10-10)+35 \\ &=35 \end{aligned}$	First Line 2M,Second Line 2M

OUR CENTERS :

(ISO/IEC - 27001-2013 Certified)

Ans	a) Here $\mathrm{Sh}_{\mathrm{x}}=0.5$ and $\mathrm{y}_{\text {ref }}=-1$ $\begin{aligned} {\left[\begin{array}{c} A^{\prime} \\ B^{\prime} \\ C^{\prime} \\ D^{\prime} \end{array}\right] } & =\left[\begin{array}{l} A \\ B \\ C \\ D \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & 0 \\ \text { Sh }_{\mathrm{x}} & 1 & 0 \\ -\mathrm{Sh}_{\mathrm{x}} \cdot \mathrm{y}_{\mathrm{ref}} & 0 & 1 \end{array}\right] \\ & =\left[\begin{array}{lll} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0.5 & C & 1 \end{array}\right] \\ & =\left[\begin{array}{ccc} 0.5 & 0 & 1 \\ 1.5 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right] \end{aligned}$ b) Here $\mathrm{Sh}_{\mathrm{y}}=0.5$ and $\mathrm{x}_{\text {ret }}=-1$ $\begin{aligned} {\left[\begin{array}{l} A^{\prime} \\ B^{\prime} \\ C^{\prime} \\ D^{\prime} \end{array}\right] } & =\left[\begin{array}{l} A \\ B \\ C \\ D \end{array}\right]\left[\begin{array}{cccc} 1 & S h_{y} & 0 \\ 0 & & 0 \\ 0 & -S h_{y} \mathrm{X}_{\text {nef }} & 1 \end{array}\right] \\ & =\left[\begin{array}{lll} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0.5 & 0 \\ 0 & 1 & 0 \\ 0 & 0.5 & 1 \end{array}\right]=\left[\begin{array}{ccc} 0 & 0.5 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 1.5 & 1 \end{array}\right] \end{aligned}$ It is important to note that shearing operations can be expressed as sequence of basic transformations. The sequence of basic transformations involve series of rotation and scaling transformations. (a) Original square (b) Sheared square	$\begin{aligned} & \text { Shear in Yref=- } \\ & \text { 1: 3 M; } \\ & \text { Shear in Xref = } \\ & -1: 3 \mathrm{M} \end{aligned}$

